
COMP283-Lecture	6 

Applied	Database	Management

Introduction

Database	Administration More	Optimisation

Maintaining	Data	Integrity

Improving	Performance

�1

COMP283-Lecture	6 
DB	Administration:	Full-text	index
● Full	Text	Index	
● Index	large	text	based	attributes	(e.g.	documents)	
● Should	(ideally)	be	kept	up	to	date		
● automatically	-	potentially	a	higher	processor	load	
● manually	-	index	not	always	up	to	date	(not	MySQL)	

● MySQL	-	choice	of	storage	engine.	
● Only	some	support	Full	Text	Indexes.	
● Only	CHAR,	VARCHAR	and	TEXT	type	columns

�2

COMP283-Lecture	6 
DB	Administration:	Full-text	index

●Modern	Operating	Systems	use	full	text	indexes	(&	more)	
for	searching.	e.g.	Mac	OS	

● Filesystem	tracks	changes	to	files	using	low-level	
filesystem	hooks.	

● The	search	index	can	be	maintained	in	real	time,	
automatically.	

● A	list	is	maintained	by	the	OS,	of	files	whose	contents	
have	changed.	
● For	what	purpose?	

● In	the	event	of	filesystem	errors,	or	modifications	to	the	
filesystem	through	some	other	means,	the	index	has	to	be	
rebuilt.

�3

Quick	Demo!

�4

COMP283-Lecture	6 
DB	Administration:	Constraints
● Constraints	on	a	table	are	Rules.	
● Applied	to	the	data	being	inserted	or	modified.	

● Constraints	ensure	that	appropriate	data	is	entered.	
● Constraints	can	set	default	values.	
● If	a	record	is	inserted	and	it	missing	some	attributes,	it	
can	have	default	values	applied.

�5

COMP283-Lecture	6 
DB	Administration:	Views
● Views	are	stored	queries.		Treated	like	tables	–	they	can	
be	indexed	and	queried.	

● Views	are	useful	to	restricting	access	to	a	limited	subset	
of	data	attributes	(can	be	across	multiple	tables)	

● Views	are	useful	to	tunnel	through	security.	
● 3	Types:	Standard,	Indexed,	and	Partitioned	views.	
● Example	–	create	a	view:	 
CREATE VIEW vwRockMusic AS  
SELECT strArtist, strAlbum, strSong FROM
tblAlbums  
WHERE tblAlbums.Genre = “Rock”;

�6

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● Stored	procedures	are	a	sequence	of	executable	SQL	
statements,	compiled	and	saved	within	the	database.	

● A	stored	procedure	is	often	a	saved	query	–	the	difference	
between	a	Stored	Procedure	and	a	view	is	that	the	stored	
procedure	can	have	parameters	passed	to	it	and	is	more	
dynamic.				i.e.	You	can	pass	query	criteria	(WHERE	
clause	parameters)	to	the	stored	procedure.	

● Can	simplify	client	applications	and	avoid	the	need	for	
changes	to	it	if	DB	structure	changes	needed.	How?	

● The	principal*	must	have,	directly	or	inherited,	Execute	
permission	on	the	Stored	Procedure.

�7*user	or	application	program

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● MySQL	Stored	Procedure	introduced	in	Version	5.0.	
● In	most	DBMS	stored	procedures	are	compiled	and	
stored	in	the	database.		

● MySQL	stored	procedures	are	compiled	on	demand.		
● After	compiling	a	stored	procedure,	it	is	cached.	
● 	MySQL	maintains	its	own	stored	procedure	cache	for	
every	single	connection.	If	an	application	uses	a	stored	
procedure	multiple	times	in	a	single	connection,	the	
compiled	version	is	used,	otherwise,	the	stored	
procedure	works	like	a	query.

�8

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures:	+VE
● Help	reduce	the	traffic	between	application	and	database	server	
● Instead	of	sending	multiple	lengthy	SQL	statements,	the	
application	has	to	send	only	name	and	parameters	of	the	
stored	procedure.	

● Are	reusable	and	transparent	to	any	applications.		
● They	don’t	expose	the	database	interface	to	all	applications	
● developers	don’t	have	to	develop	functions	that	are	already	
supported	in	stored	procedures.	

● They	are	secure.		
● The	DBA	can	grant	appropriate	permissions	to	applications	
that	access	stored	procedures	in	the	database	without	giving	
any	permissions	on	the	underlying	database	tables.

�9

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures:	-VE
● If	using	lots	of	stored	procedures,	memory	usage	of	every	
connection	will	increase	substantially.	

● If	you	overuse	a	large	number	of	logical	operations	inside	stored	
procedures,	CPU	usage	will	also	increase	-	the	database	server	is	
not	well-designed	for	logical	operations.	

● Constructs	of	stored	procedures	make	it	more	difficult	to	
develop	stored	procedures	that	have	complicated	business	logic.	

● It	is	difficult	to	debug	stored	procedures.		
● Few	DBMS	allow	you	to	debug	stored	procedures.	MySQL	is	
not	one	of	them.	

● Not	easy	to	develop	and	maintain	stored	procedures.		
● Often	required	a	specialized	skill	set	that	not	all	application	
developers	possess.

�10

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● Examples	of	Stored	Procedures	in	MySQL

�11

 DELIMITER //
 CREATE PROCEDURE GetAllProducts()
 BEGIN
 SELECT * FROM products;
 END //
 DELIMITER ;

changes	the	standard	
delimiter	(;)	to	//	
(not	part	of	stored	proc	definition)

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● Examples	of	Stored	Procedures	in	MySQL

�12

 DELIMITER //
 CREATE PROCEDURE GetAllProducts()
 BEGIN
 SELECT * FROM products;
 END //
 DELIMITER ;

Use	this	to	create	the	
new	stored	procedure.	
(note	()	after	the	name)

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● Examples	of	Stored	Procedures	in	MySQL

�13

 DELIMITER //
 CREATE PROCEDURE GetAllProducts()
 BEGIN
 SELECT * FROM products;
 END //
 DELIMITER ;

Stored	procedure	body	is	
between	BEGIN	and	END	
statements	

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures
● Examples	of	Stored	Procedures	in	MySQL

�14

 DELIMITER //
 CREATE PROCEDURE GetAllProducts()
 BEGIN
 SELECT * FROM products;
 END //
 DELIMITER ; changes	the	standard	

delimiter	back	to	;

COMP283-Lecture	6 
DB	Administration:	Stored	Procedures

�15

DELIMITER //
CREATE PROCEDURE CountOrderByStatus(
 IN orderStatus VARCHAR(25),
 OUT total INT)
BEGIN
 SELECT count(orderNumber)
 INTO total
 FROM orders
 WHERE status = orderStatus;
END//
DELIMITER ;

CALL CountOrderByStatus('in process',@total);
SELECT @total;

+--------+	
|	@total	|	
+--------+	
|	301				|	
+--------+

CALL CountOrderByStatus('in process',@total);
SELECT @total AS total_in_process;

+------------------+	
|	total_in_process	|	
+------------------+	
|	301														|	
+------------------+

COMP283-Lecture	6 
DB	Administration:	Triggers

● A	trigger	is	a	named	database	object	associated	with	a	table,	
that	activates	when	a	particular	event	occurs	for	the	table.		
● e.g.	perform	checks	of	values	to	be	inserted	into	a	table	or	
to	perform	calculations	on	values	involved	in	an	update.	

● In	MySQL,	a	trigger	is	defined	to	activate	when	a	statement	
inserts,	updates,	or	deletes	rows	in	the	associated	table.		

● These	row	operations	are	trigger	events.		
● e.g.	rows	can	be	inserted	by	INSERT	or	LOAD	DATA	
statements,	and	an	insert	trigger	activates	for	each	
inserted	row.		

● A	trigger	can	be	set	to	activate	either	before	or	after	the	
trigger	event.

�16

COMP283-Lecture	6 
DB	Administration:	Triggers
● Examples	of	Triggers	in	MySQL

�17

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),
(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

DELIMITER $$
CREATE TRIGGER before_employee_update
 BEFORE UPDATE ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO employees_audit
 SET action = 'update',
 employeeNumber = OLD.employeeNumber,
 lastname = OLD.lastname,
 changedat = NOW();
END$$
DELIMITER ;

COMP283-Lecture	6 
DB	Administration:	Triggers
● Can	use	a	trigger	in	MySQL	to	setup	an	audit	trail	e.g.

�18

CREATE TABLE employees_audit (
 id INT AUTO_INCREMENT PRIMARY KEY,
 employeeNumber INT NOT NULL,
 lastname VARCHAR(50) NOT NULL,
 changedat DATETIME DEFAULT NULL,
 action VARCHAR(50) DEFAULT NULL
);

COMP283-Lecture	6 

Conclusion

● Full	Text	Indexing	
● Maintaining	Data	Integrity	
● Improving	Performance

�19

